
Chapter 17

INSTABILITY OF ISOCHRONOUS

RINGS

In a storage ring, sometimes there are advantages to reduce the slippage factor η. One

reason is the achievement of shorter bunch length. In proton or muon storage rings where

there is no synchrotron radiation, the bunch length at fixed rf voltage is proportional to

|η|1/4. For electron rings where the energy spread is determined by synchrotron radiation,

the bunch length is proportional to |η|1/2. Another reason is the requirement of a much

smaller rf system. To maintain a bunch at the required rms length στ and momentum

spread σδ, the synchrotron tune is

νs =
|η|σδ
ω0στ

, (17.1)

and the rf voltage is therefore

Vrf =
2π|η|β2Eσ2

δ

ehω2
0σ

2
τ | cosφs|

(17.2)

which decreases linearly as |η|. In above, h is the rf harmonic, φs is the synchronous phase

angle, E the energy of the synchronous particle which has revolution angular frequency

ω0 and velocity βc where c is the velocity of light. Ideally, when η = 0, no rf will be

necessary, because there will not be any drift in phase. A ring with η = 0, i.e., operating

right at transition energy, is called an isochronous ring. However, there is always a spread

in energy in the beam particles. As a result, it is not possible for every beam particle to see

isochronicity. Also, the slippage factor η is actually a nonlinear function of the momentum
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spread. Usually, isochronicity is defined when the slippage factor vanishes in the first order

of the momentum spread. The higher-order contributions will provide a finite slippage.

Thus, the ring is actually quasi-isochronous. For such a ring, the parameters of interest

are (1) η for the synchronous particle and (2) the total spread in η seen by all the beam

particles. It is necessary to design the lattice so that both η and the spread in η are

small. When η is vanishing small, there will not be any Landau damping and collective

instabilities will emerge as an important issue, which we are going to investigate in this

chapter.

17.1 HIGHER-ORDER MOMENTUM OFFSET

Transition crossing is defined as the moment when the relativistic gamma of the

particle is equal to γt of the accelerator ring. Let us recall that the transition gamma is

defined as γt = α−1/2
0 , where α0 is the momentum-compaction factor which is the fractional

increment of the circumferential orbit length of a particle with fractional momentum offset

δ. Hence, if C(δ) is the length of the off momentum orbit,

C(δ) = C0(1 + α0δ) , (17.3)

with C0 = C(0) being the length of the on-momentum orbit. Thus the slippage factor η

is exactly zero at transition. However, Eq. (17.3) only gives the linear dependence of the

orbit length on momentum offset. In general, this is never the case for any accelerator

lattice. Therefore, Eq. (17.3) should be extended to∗

C(δ) = C0

[
1 + α0δ(1 + α1δ + α2δ

2 + · · · )
]
, (17.4)

where α1, α2, etc. are called the high-order components of the momentum-compaction

factor. Now the slippage factor η also becomes momentum spread dependent. Its higher

orders must be carefully defined so that it enters correctly into Eq. (15.3), the phase-slip

equation of motion
d∆φ

dt
= ω0ηδ , (17.5)

Here, we follow a derivation of Edwards and Syphers [1]. A particle with momentum

offset δn sees an accumulated rf phase φn on its n-th passage of the rf cavity, which is

∗In Europe, α0, α1, α2, etc. are usually referred to as α1, α2, α3, etc. There is also another common
definition, where C(δ) = C0

[
1 + α0δ + α1δ

2 + α2δ
3 + · · · )

]
.
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considered to have an infinitesimal length. On its (n+1)-th passage, at a time Tn+1+∆Tn+1

later, the accumulated rf phase seen becomes

φn+1 = φn + ωrf(Tn+1 + ∆Tn+1) , (17.6)

where ωrf/2π is the rf frequency, Tn+1 is the revolution period of the synchronous particle

during its (n+1)-th turn and ∆Tn+1 is the extra time taken by the off-momentum particle

to complete the revolution. On the other hand, the rf phase seen by the synchronous

particle accumulates according to

φsn = ωrftn , (17.7)

where tn is the total accumulated time up to the n-th passage of the cavity. Because

the off-momentum particle belongs to a bunch with the synchronous particle, we like

to measure the rf phase seen relative to the synchronous particle. This leads to the

introduction of the rf phase offset or rf phase slip ∆φn defined by

∆φn = φn − φsn = φn − ωrftn , (17.8)

Substituting into Eq. (17.6) and noting that Tn+1 = tn+1 − tn, we arrive at

∆φn+1 = ∆φn + ωrf∆Tn+1 . (17.9)

In order for the synchronous particle to be synchronized, one must adjust the rf frequency

so that ωrfTn+1 = 2πh for all turns, where h is the rf harmonic number. Now, we can

define the slippage factor as the slip in revolution period at the (n+1)-th passage of the

cavity by
∆Tn+1

Tn+1

= ηn+1δn+1 . (17.10)

Here, the subscript of η implies its dependence on the momentum offset of the particle

at the (n+1)-th passage and not its higher-order expansion term. When smoothing is

applied, we obtain the phase-slip equation of Eq. (15.10),

d∆φ

dt
= ω0ηδ . (17.11)

Since the revolution period can be expressed as

T =
C

βc
, (17.12)
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we can easily expand T as a Taylor series in δ, from which each higher-order of the slippage

factor can be identified. For example, we have

T ′

T0
=
C ′

C
− β ′

β
,

T ′′

T0
=

2C ′2

C2
− 2β ′C ′

βC
− β ′′

β
+

2β ′2

β2
,

T ′′′

T0

=
C ′′′

C
− 3β ′C ′′

βC
− 3β ′′C ′

βC
+

6β ′2C ′

β2C
− β ′′′

β
− β ′β ′′

β2
− 6β ′3

β3
, (17.13)

where the prime denotes differentiation with respect to δ and all variables are evaluated

at the synchronous values, i.e., with subscript zero. The derivatives of C can be read off

easily from Eq. (17.4). The derivatives of β can be computed straightforwardly. They

are:
β ′

β
=

1

γ2
,

β ′′

β
= −3β2

γ2
,

β ′′′

β
= −3β2(1− 5β2)

γ2
. (17.14)

With the expansion of the slippage factor

η = η0 + η1δ + η2δ
2 + · · · , (17.15)

we obtain the expressions for the higher-order components of the slippage factor [Exer-

cise 17.1:

η0 = α0 −
1

γ2
, (17.16)

η1 = α0α1 +
3β2

2γ2
− η0

γ2
, (17.17)

η2 = α0α2 +
α0α1

γ2
− 2β4

γ2
+

3α0β2

2γ2
+
η0

γ4
, (17.18)

Looking at the phase slip equation above, one may be tempted to relate d∆φ/dt to

−∆ω/h. This will translate the definition of η to

∆ω

ω0
= −ηδ . (17.19)
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which is different from Eq. (17.10) and therefore would lead to incorrect expressions for

the higher-order terms of η. This misconception comes about in the smoothing procedure

from Eq. (17.9) to Eq. (17.11), where we divide throughout by the synchronous period. If

∆ω of the off-momentum particle is desired, one should divide instead by Tn+1 + ∆Tn+1,

the revolution period of the off-momentum particle.

Another definition in the literature is [2]

η = − 1

ω0

dω

dδ
, (17.20)

which is incompatible with the phase-slip equation in Eq. (17.11). This definition origi-

nates from the lowest order expansion in ω [2], and is therefore insufficient when higher-

orders in η are studied. This is, in fact, a variation of the incorrect definition of Eq. (17.19).

17.2 η1-DOMINATED BUCKET

To save the cost of rf power, suggestions have been made to make the storage rings

isochronous or quasi-isochronous, implying an operation when η0 ≈ 0. Since the drift of

the longitudinal phase is small, a small rf system will be adequate. However, when η0 is

small enough, we need to include the next lowest nonlinear term of the slippage factor,

namely η1. When the rf phase slip ∆φ and the fractional momentum spread δ are used

as canonical coordinates with time t being the independent variable, the Hamiltonian

describing the motion of a particle in the longitudinal phase space becomes

H =

(
η0δ2

2
+
η1δ3

3

)
hω0 +

eVrfω0

2πβ2E
[cos(φs + ∆φ) + ∆φ sinφs] , (17.21)

where φs is the synchronous phase. With the presence of η1, the symmetry of the higher-

and lower-momentum parts of the phase space is broken. As a result, the phase-space

structure will be very much disturbed. This Hamiltonian gives stable fixed points at

(2nπ, 0), (2(n + 1)π − 2φs,−η0/η1) and unstable fixed points at ( 2(n + 1)π − 2φs, 0),

(2nπ,−η0/η1), where n is any integer. When the contribution of η1 is much smaller than

that of η0, the buckets are still roughly pendulum-like as shown in Fig. 17.1(a) for the

case of φs = 0. Note that there is another series of buckets at momentum spread −η0/η1.

As |η0/η1| decreases to a point when the values of the Hamiltonian through all unstable

fixed points are equal, the two series merge as shown in Fig. 17.1(b). This happens when∣∣∣∣η0

η1

∣∣∣∣ =

{
6eVrf

πβ2hη0E

[(π
2
− φs

)
sinφs − cosφs

]}1/2

. (17.22)
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Figure 17.1: (a) When |η0/η1| is not too small, the longitudinal phase space shows
2 series of distorted pendulum-like buckets. (b) As |η0/η1| decreases to the critical
value in Eq. (17.22), the 2 series merge. (c) Further reduction of |η0/η1| leads to
new pairing of stable and unstable fixed points and the buckets become α-like. In
each case, the dotted line is the phase axis at zero momentum spread, and the small
circles are the stable fixed points.

The right side is just
√

3 times the half bucket height when the η1 term in the Hamiltonian

is absent. As |η0/η1| is further reduced, the pairing of the stable and unstable fixed points

is altered, and the bucket become α-like as illustrated in Fig. 17.1(c). The bucket height

is now given by

δ̂ =


+

∣∣∣∣ η0

2η1

∣∣∣∣ δ > 0 ,

−
∣∣∣∣η0

η1

∣∣∣∣ δ < 0 .

(17.23)

Note that the height of the bucket will vanish if the lattice approaches truly isochronous

(η0 = 0).

Let us now review some very peculiar properties of the α-like bucket.
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(1) Since the height of the α-shape bucket is fixed, the bucket width φ is proportional

to V −1/2
rf and so is the bucket area A [3]. In fact,

φ =

(
|η0|3/2
|η1|

)(
2πβ2hE

3eVrf | cosφs|

)1/2

, A =
6

5

(
|η0|5/2
η2

1

)(
2πβ2hE

eVrf| cosφs|

)1/2

, (17.24)

where the narrow width of the bucket has been assumed and its maximum momentum

spreads of |η0/(2η1)| and −|η0/η1| have been used. Unlike the usual pendulum-like bucket

where the bucket width is fixed and the bucket height and area increase with the rf

voltage, here, this α-like bucket has fixed height while its width and area will be increased

by lowering the rf voltage. As an example, if we set the bucket height to |η0/η1| = kδδmax

and the bucket half width to ˆ̀ = k``max, where δmax and `max are the maximum bunch

momentum spread and length in m, the required rf voltage times rf harmonic is

hVrf =
2πβ2ER2|η0|k2

δδ
2
max

3ek2
` `

2
max| cosφs|

, (17.25)

where we have used φs = 0 or π. The maximum momentum spread and bunch length are

also related by the Hamiltonian,

Vrf

h
=
πβ2E|η0|δ2

max

2e sin2 1
2
φmax

(
1 +

2

3kδ

)
. (17.26)

The maximum half phase spread is φmax = h`max/R. Therefore, when the rf harmonic

h� 2R/`max, Eqs. (17.25) and (17.26) give(
kδ
k`

)2

= 3 +
2

kδ
, (17.27)

which is universally true, independent of the bunch and lattice parameters.

(2) The asymmetry between positive and negative momentum spreads brought in by

η1 will lead to bunch length oscillations. Since the energy loss due to the resistive part of

the impedance of the vacuum chamber is proportional to the bunch length, this may lead

to a continuous growth of the synchrotron oscillation amplitude. This instability is called

longitudinal head-tail, which had been observed in the CERN SPS [4]. The instability

can become very strong here because η0 has been made negligibly small.

(3) The synchrotron frequency as a function of oscillation amplitude can be com-

puted easily [3]. As the oscillation amplitude increases, the synchrotron frequency inside

the α-like bucket decreases much more slowly than that inside an ordinary pendulum-like
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bucket. However, it drops to zero very abruptly near the edge of the bucket. Thus, the

α-like bucket resembles a resonance island more than the usual pendulum-like bucket. Be-

cause of the sudden drop of the synchrotron frequency near the separatrix, higher-order

resonances due to small jitters or modulations of the rf phase or rf voltage overlap creating

a thick stochastic layer thus further reducing the stable area inside the bucket.

(4) Although there are disadvantages of the α-like bucket, nevertheless, this bucket

is intrinsically narrow in phase spread, as is depicted in Eq. (17.24). For a pendulum-like

bucket, the bucket width is always equal to the rf wavelength, whereas for a α-like bucket,

the bucket width is mostly much less than the rf wavelength. Moreover, for a bunch in an

ordinary pendulum-like bucket, the bunch width varies as (|η0|/Vrf)1/4; thus reducing the

momentum-compaction factor or increasing the rf voltage is not very efficient in reducing

the width of the bunch. On the other hand, a bunch in the α-like bucket has a width

proportional to |η|3/2/V 1/2
rf .

17.3 η2-DOMINATED BUCKET

The η1 term will lead to a small bucket area and possibly longitudinal head-tail

instability, thus limiting the beam dynamic when the machine is near isochronous. The δ-

asymmetric bucket can lead to unpleasant longitudinal head-tail instability. Furthermore,

α1 can destroy the isochronicity of the ring. For example, if we want to have a 2 TeV

on 2 TeV isochronous ring for the muon collider with |η| <∼ 1 × 10−6, the α1 term can

contribute a a spread of γ−2
t

of ∼ 70× 10−6 at the momentum spread of |δ| < 0.3% [5].

A large spread in γ−2
t

implies large slippage factors for some particles, so that unusually

large rf will be required for bunching. Therefore, η1 should be eliminated. Then, the

Hamiltonian with the next nonlinear term η2 included becomes

H =

(
η0δ

2

2
+
η2δ

4

4

)
hω0 +

eVrfω0

2πβ2E
[cos(φs + ∆φ) + ∆φ sinφs] . (17.28)

A quadrupole bends particles with positive and negative off-momenta in opposite direc-

tions. To the lowest order, it contributes to α0 of the momentum-compaction factor. On

the other hand, a sextupole bends particles with positive and negative off-momenta in the

same direction, and therefore contributes to α1. In fact, through first-order perturbation

theory, one can show that α2 can be corrected with octupoles, α3 with decapoles, and so

on [6, 7]. Having the ability to change α2 with octupoles may be useful because it may

be easier than adjusting α2 with sextupoles since the latter also affect α1.
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With the contribution of η1 eliminated, it is possible to adjust η0 to zero so that the

Hamiltonian becomes

H =
1

4
hω0η2δ

4 +
eVrfω0

2πβ2E
[cos(φs + ∆φ) + ∆φ sinφs] , (17.29)

Now for φs = 0, the bucket looks pendulum-like with the usual width of ∆φ = 2π. The

bucket half height is δ̂ = [4eVrf/(πβ2Eh|η2|)]1/4. When the half bunch length `max is short,

it is related to the half momentum spread δmax by

δ4
max =

(
eVrfh

πβ2E|η2|

)(
`max

R

)2

. (17.30)

If we let δ̂ = kδmax, we can solve for the necessary rf voltage and rf harmonic:

Vrf =
πβ2ERk2∆ηδ2

max

2`max
, h =

2R

`maxk2
, (17.31)

where ∆η = |η2|δ2
max is the desired spread of the slippage factor of the bunch. Note that

the rf voltage is proportional to ∆η, the desired spread in momentum-compaction, and

δ2
max, the momentum spread of the bunch squared. Thus, if we reduce the momentum-

compaction spread, the rf voltage will be reduced by the same factor. On the other hand,

the rf frequency is independent of the choice of ∆η and δmax.

For small phase spread, Eq. (17.29) describes a particle oscillating in a quartic poten-

tial (with ∆φ and δ interchanged). This is a well-known situation when a second higher

harmonic cavity is present and the two cavity voltages are inversely proportional to the

square of their respective harmonics (see Sec. 8.3.1. For such a system, the synchrotron

frequency is zero at zero oscillating amplitude and increases linearly with respect to the

momentum offset δmax, or the 4th root of the Hamiltonian. The synchrotron frequency

increases to a maximum for larger oscillation amplitude and drops to zero again at the

edge of the bucket. Simple derivation gives the synchrotron tune νs = νs0F (H), where

νs0 =
√
h∆ηeVrf/(2πβ2E) with ∆η = |η2|δ2

max just the synchrotron tune of a synchronous

particle in an ordinary single rf system with a slippage factor equal to ∆η. For a constant

η2, the νs0 is directly proportional to the momentum-offset excursion δmax. The form

factor F (H) can be written as (Exercise 17.4)

F−1(H) =
23/4

2π

∫ π/2

0

dz
√

cos z
√

1− sin2 φmax

2
sin2 z

. (17.32)
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The form factor is evaluated at the Hamiltonian value,

H =
eVrfω0

πβ2E
sin2 φmax

2
= 1

4
h|η2|ω0δ4

max , (17.33)

where φmax and δmax are equal to, respectively, the phase and momentum-offset excursions

of the beam particle under investigation. A large spread in synchrotron frequency can

be advantageous to providing Landau damping to mode-coupling instabilities. For small

φmax, from Eqs. (17.31) and (17.33), one obtains sin2(φmax/2) = k−4, where k = δ̂/δmax.

Thus, the form factor of Eq. (17.32) is almost a constant for any reasonable k, and is

roughly equal to F (H) = 1.45.

17.4 MICROWAVE INSTABILITY NEAR

TRANSITION

17.4.1 ANALYTIC SOLUTIONS

In an operation near the transition energy (η0 ≈ 0), at least the next order, η1 in

Eq. (17.15), must be included for a meaningful discussion of the beam dynamics. Bogacz

analyzed the stability of a coasting beam right at transition, η0 = 0 [8], by including the

η1 term but neglecting other higher-order terms. For a Gaussian distribution with rms

energy spread σE, he obtained an analytic expression for the growth rate at the revolution

harmonic n:

1

τn
= −2α1nω0

(
σE
E0

)2

φn with tan φn =

[
ImZ

‖
0

ReZ‖0

]
n

, (17.34)

where ImZ
‖
0 > 0 implies capacitive and ω0/(2π) is the revolution frequency of the on-

energy particle which has energy E0. He drew the conclusion that the beam will be

completely stable. However, when he made this conclusion, he had in mind the assumption

of α1 > 0 and φn > 0, which is not always true. As a result, there will be microwave

growth in general.

Holt and Colestock studied the same problem with coasting beam and Gaussian

energy distribution, but allowing η0 6= 0 [9]. The dispersion relation is expressed in terms

of the complex error function. Their conclusion is that there is no unstable region in

the complex Z‖0 -plane below transition. On the other hand, there are both stable and
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unstable regions above transition. They also claimed that their conclusion was supported

by simulations. However, they did not specify the values of η0 and η1 in the simulations

they presented or in their stability plots in the complex Z
‖
0 -plane. It is hard to understand

at least the situation below transition. It is clear that when |η0| is not too small, the

contribution of η1 is irrelevant. Thus their claim as stated can be interpreted as no

microwave instability below transition, no matter how far away it is from transition. For

this reason, this claim is quite questionable. When we look into the stability plots of Holt

and Colestock, Fig. 17.2, we can see something that resembles a stability curve below

transition.. The presence of a stability curve implies the existence of both stable and

unstable regions, in contradiction to their conclusion.

We performed some simulations and have different results. We consider a coasting

beam at 100 GeV in a hypothetical ring of circumference 50 m, with a rms parabolic

fractional momentum spread of 0.001, interacting with a broadband impedance of Z‖0/n =

3.00 Ω at the resonance frequency of 600 MHz and quality factor Q = 1. This small size of

ring is chosen because we want to limit the number of longitudinal bins around the ring so

that not so many macro-particles will be necessary. The Keil-Schnell circle-approximated

criterion gives a limit of |Z‖0/n| = 1.00 Ω [10]. The results are shown in Fig. 17.3: the top

4 plots for η = −0.005 (below transition) and the lower 4 plots for η = +0.005 (above

transition) at 0, 1200, 2400, and 3600 turns. We see that below transition irregularities

develop at the low-momentum edge and the momentum spread broadens at the low-

momentum side until the total spread is about 1100 MeV, about 2.75 times the original

total spread of about 400 MeV. This definitely confirms the occurrence of microwave

instability below transition, and the eventual self-stabilization by overshooting. Above

transition, irregularities also develop at the low-momentum edge and the momentum

spread also broadens at the low-momentum edge. The total spread appears to be broader

than the situation below transition. In addition, we see small bomb-like droplets launched

at the low-momentum side, which is not observed below transition. We will come back to

the simulations of coasting beam near transition later in Sec. 17.4.3.

17.4.2 BUNCHED BEAM SIMULATIONS

In this section, we study the stability of a bunched beam very close to transition.

As an example, take a muon bunch in the proposed 50 × 50 GeV muon collider, which

has a slip factor of |η| = 1 × 10−6. Everything we discuss here will apply to a proton

bunch also, with the exception that the muons decay while the protons are stable. We
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Figure 17.2: (color) Dispersion relation plots in the complex impedance plane. The
thick blue curves with circles are for real frequencies and therefore should exhibit
the stability boundaries. The red curves with +’s are for complex frequencies. Top
plot is below transition and bottom plot above transition.
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Figure 17.3: The top 4 plots and lower 4 plots are for η = −0.005 (below transition)
and η = +0.005 (above transition), respectively, at 0, 12000, 24000, and 36000 turns.
The impedance is a broadband with Q = 1, Z‖0/n = 3.0 Ω at the resonant frequency
of 600 MHz.
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b)

 -40                         0                          40

Figure 17.4: Effects of a strong space-charge or potential-well distortion force result
in a N -shape vertical shear on the bunch.

will first discuss the situation with the decay of the muons taken into consideration, and

later push the lifetime to infinity. We assume that sextupoles and octupoles are installed

and adjusted so that the contributions of η1 and η2 become insignificant compared with

η0. The muon bunch we consider has an intensity of Nb = 4 × 1012 particles, rms width

σ` = 13 cm and rms fractional momentum spread σδ = 3 × 10−5 or σE = 1.5 MeV.

The impedance is assumed to be broadband with Z
‖
0/n = 0.5 Ω at the angular resonant

frequency of ωr = 50 GHz with quality factor Q = 1. The muons have an e-folding lifetime

of 891 turns at 50 GeV in this collider ring. During the muon lifetime, there is negligible

phase motion. Thus a bunching rf frequency system is not necessary. However, as will be

explained below, rf systems are needed for the cancellation of potential-well distortion.

For bunched beams, there is the issue of potential-well distortion which must not be

mixed up with the collective microwave instability. Potential-well distortion will change

the shape of the bunch to something that looks like the plot of Fig. 17.4, with the difference

that the distortion of the beam does not come from the space-charge force, but mainly

from the inductive part of the broadband impedance.

The wake potential seen by a particle inside a Gaussian bunch at a distance z behind
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Figure 17.5: (color) Wake potential, compensating rf voltages, and net voltage seen
by particles in the 13-cm bunch at injection. The compensating rf is the sum of two
rf’s represented by dashes.

the bunch center is shown in Fig. 17.5 and is given by

V (z)=e

∫ z

−∞
dz′ρ(z′)W0(z − z′)=− eNωrR‖

2Q cosφ0
Re ejφ0−z2/(2σ2

`)w

[
σ`ωrejφ0

c
√

2
− jz√

2σ`

]
,

(17.35)

where ρ(z) is the bunch distribution, W0(z) the longitudinal wake function, sinφ0 =

1/(2Q), and w is the complex error function. This distortion can be cancelled up to ±3σ`
by 2 rf systems [11], which at injection are at frequencies ω1/(2π) = 0.3854 GHz and

ω2/(2π) = 0.7966 GHz, with voltages V1 = 65.40 kV and V2 = 24.74 kV, and phases

ϕ1 = 177.20◦ and ϕ2 = 174.28◦ . This compensation is shown in Fig. 17.5. Since only 2

sinusoidal rf’s are used, the cancellation is not complete; however, the error is less than

1% of the original wake potential and is not important. Because of the lifetime of the

muons, we first performed tracking for only 1000 turns in the time domain using the

broadband wake function W0(z). The initial and final bunch distributions are shown in

Fig. 17.7. During the simulation the compensating rf voltages were lowered turn by turn

to conform with the diminishing bunch intensity due to the decay of the muons.

We see from the right plot of Fig. 17.7 that the bunch distribution has been very much
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distorted after 1000 turns. This comes mostly from the fact that the original distribution

of the bunch in the left plot is not exactly Gaussian. It consists of 2×106 macro-particles

randomly distributed according to a bi-Gaussian distribution. As a result, the wake

potential of the actual bunch shown as a dotted curve in Fig. 17.6 deviates slightly from

and wiggles around the ideal wake potential curve of a smooth Gaussian bunch shown in

dashes. The difference is the dotted jitter curve in the center of the plot. The fluctuation

seen in the right plot of Fig. 17.7 is the result of the accumulation of this dotted jitter

curve in 1000 turns with muon decay taken into account. Although this tiny fluctuation

leads to a small potential-well distortion in one turn (≤ 0.02 MeV), it is unfortunate that

it will accumulate turn after turn and will never reach a steady state, since the beam is

so close to transition. This accumulated distortion can be computed exactly from the the

dotted jitter curve. Any growth in excess will come from collective microwave instability.

Note that the uncompensated potential-well distortion is quite different from the growth

due to microwave instability. For the former, the growth in energy fluctuations every

turn will be exactly by the same amount as given by the dotted jitter curve in the right

Fig. 17.6 (if muon decay is neglected). This is because the wake potential of particles along

the bunch does not depend on the energy distribution of the bunch, but only on its linear

density and the latter is essentially unchanged since the particles do not drift much during

the first 1000 turns. On the other hand, the initial growth due to microwave instability

at a particular turn is proportional to the actual energy fluctuation at that turn and

the evolution of the growth is exponential. Thus, although the growth due to microwave

instability is small at the beginning, it will be much faster later on when the accumulated

energy fluctuations become larger. It is worth mentioning that even if the wake potential

of the initial bunch with statistical fluctuations has been compensated exactly by the rf’s,

the bunch can still be unstable against microwave instability. An infinitesimal deviation

from the bunch distribution can excite the collective modes of instability corresponding

to some eigen-frequencies. In other words, the accumulated growth due to potential-

well distortion is a static solution and this static solution converges very slowly close to

transition until the momentum spread is large enough for the small |η| to smooth the

distribution. Microwave instability, on the other hand, is a time dependent solution.

In Fig. 17.8, the 3 plots on the left are for a 4000-turn simulation of the same muon

bunch using 2 × 106 macro-particles with the decay of the muons considered. The two

compensating rf systems are turned on. The first plot is for η = 0 so that microwave

instability cannot develop. All the fluctuations are due to the residual potential-well dis-

tortion or the accumulation of the uncompensated jitters. The second and third plots



17.4. MICROWAVE INSTABILITY NEAR TRANSITION 17-17

Figure 17.6: (color) Wake potential seen by the simulated bunch shown as dots
is interlaced with the wake potential of an ideal smooth Gaussian bunch shown in
dashes. The difference (center curve) represents the random fluctuation of the finite
number of macro-particles.

are for, respectively, η = −1× 10−6 (below transition) and η = +1× 10−6 (above transi-

tion). We see that they deviate from the first plot, showing that there are growths due

to microwave instability although the effect is small. The 3 plots on the right are the

same as on the left with the exception that the muons are considered stable, or, in other

words, the particles can be protons. We see that the second and third plots differ from

the first one by very much (note the change in energy scale), indicating that microwave

instability does play an important role for proton bunches in a quasi-isochronous ring. We

also see that microwave instability is more severe above transition than below transition

even when the beam is so close to transition.

17.4.3 COASTING BEAM SIMULATIONS

For coasting beams, we do not have the inverted tilted “N”-shape wake potential
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Figure 17.7: Simulation of the 13-cm bunch of 4× 1012 muons subject to a broad-
band impedance with quality factor Q=1 and Z‖/n=0.5 Ω at the resonant angular
frequency ωr =50 GHz. The half-triangular bin width is 15 ps (0.45 cm) and 2×106

macro-particles are used. Left plot shows initial distribution with σE =1.5 MeV and
σ` = 13 cm. Right plot shows distribution after 1000 turns with compensating rf’s
depicted in Fig. 17.5.

as in Fig. 17.5. Thus, no rf compensation will be required. However, the noise in the

beam does result in a wake potential similar to the small residual wake-potential jitters in

Fig. 17.5 after the rf compensation. Near transition where the phase motion is negligibly

slow, these jitters will add up turn after turn without limit exactly in the same way as

the bunched beam after having optimized the rf compensation. Thus, near transition,

there is essentially no difference between a coasting beam and a bunched beam after the

rf compensation. The only exception is that microwave instability develops most rapidly

near the center of the bunch where the local intensity is highest, whereas in a coasting

beam, microwave instability develops with equal probability along the bunch depending

on the statistical fluctuations in the macro-particles.

In Fig. 17.9, we show some coasting beam simulations near transition by having

η0 = 0 or ±5 × 10−5 and η1 = 0 or ±0.05. The coasting beam consists of 3.27 × 1015

protons (or nondecaying muons) having an average energy of 100 GeV in a hypothetic ring

with circumference 50 m. The initial momentum spread is Gaussian with rms fractional
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spread σδ = 0.001 or σE = 100 MeV. Thus, at 1σ, the contribution of |η1| = 0.05 is the

same as the contribution of |η0| = 5× 10−5. The simulations are performed with 8× 105

macro-particles in 400 triangular bins. The impedance is a broadband with Q = 1 and

Z
‖
0/n = 2 Ω at the resonant frequency of fr = 300 MHz.

All the plots in Fig 17.9 are illustrated with the same scale for easy comparison. The

horizontal axes are longitudinal beam position from 0 to 166.7 ns, while the vertical axes

are energy spread from −4000 to 3000 MeV. Plot (a) shows the initial particle distribution

in the longitudinal phase space. All the other plots are simulation results at the end of

54,000 turns. Plot (b) is the result of having η0 = 0 and η1 = 0. It shows the accumulation

of the wake-potential jitters over 54,000 turns. These jitters originate from the statistical

fluctuation of the initial population of the macro-particles. Therefore, any deviation from

Plot (b) implies microwave instability. Plots (c) and (d) are with η0 = 0, but with

η1 = +0.05 and −0.05, respectively. We see the growths curl towards opposite phase

directions nonlinearly as expected. This is due to the nonlinearity in δ in the time slip

given by Eq. (17.15), similar to the simulations in Fig. 17.4(a). It appears that Plot (c)

with η1 = −0.05 gives a larger growth. Plots (e), (g), and (i) are for η0 = −5×10−5 (below

transition), but with η1 = +0.05, −0.05, and 0, respectively. We see that the microwave

instability is most severe when η1 = 0, indicating that η1 has the ability to curb instability.

This is, in fact, easy to understand. The phase drift driven by |η1| = 0.05 is much faster

than that driven by |η0| = 5.0× 10−5 at larger momentum spread; for example, it will be

4 times faster at 2σδ, 9 times faster at 3σδ, etc. As a result, a nonvanishing |η1| tends

to move particles away from the clumps, thus lessening the growth due to microwave

instability.

Plots (f), (h), and (j) are for η0 = +5×10−5 (above transition), but with η1 = +0.05,

−0.05, and 0, respectively. Again microwave instability is most severe when η1 = 0, and η1

does curb instability to a certain extent. Comparing Plots (e), (g), and (i) with Plots (f),

(h), and (j), it is evident that the beam is more unstable against microwave instability

above transition (η0 > 0) than below transition (η0 < 0) independent of the sign of η1.

For a fixed η0, we also notice that negative η1 is more unstable than positive η1. The

theoretical implications of these results are nontrivial and will be discussed in a future

publication.

Now let us come back to the analytic investigations by Bogacz, Holt, and Colestock.

Their results appear to contradict the simulations presented here. Analytic analysis often

starts with the Vlasov equation. The time-dependent beam distribution ψ(φ,∆E; t) can
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be separated into two parts:

ψ(φ,∆E; t) = ψ0(φ,∆E) + ψ1(φ,∆E) e−iΩt . (17.36)

Here, ψ0 is the steady-state solution of the Hamiltonian and ψ1 describes the collective

motion of the beam with the collective frequency Ω/(2π). After linearization, the Vlasov

equation becomes an eigen-equation with ψ1 as the eigenfunction and Ω/(2π) the eigen-

frequency. The equation also depends on ψ0. Thus we must solve for the steady-state

solution first before solving the eigen-equation. The steady-state solution is the time-

independent solution of the Hamiltonian which includes the contribution of the wake

function. In other words, ψ0 is the potential-well-distorted solution. Far away from

transition, this distortion is mostly in the φ coordinate, for example, those brought about

by the space-charge or inductive forces. Therefore, for a coasting beam, there will not

be any potential-well distortion at all. The situation, however, is quite different close to

transition. As was pointed out in above, the potential-well distortion is now in the ∆E

coordinate. For this reason, not only bunched beams, even coasting beams will suffer from

potential-well distortion as a result of the nonuniformity of the beam. In simulations, the

nonuniformity arrives from the statistical fluctuation of the distribution of the macro-

particles. This nonuniformity will accumulate turn by turn until the momentum spread

is so large that the small |η| is able to smooth out all nonuniformity. In other words, the

steady-state distribution ψ0 that goes into the Vlasov equation will be completely different

from the original distribution in the absence of the wake. In the analysis of Bogacz, Holt,

and Colestock, the ideal smooth Gaussian distribution in energy was substituted for ψ0

in the Vlasov equation. However, this is a very unstable static distribution; even a small

perturbation will accumulate turn by turn with extremely slow convergence. For this

reason, it is hard to understand what their results really represent.
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17.5 EXERCISES

17.1. (1) Derive Eqs. (17.13) and (17.14), the expansions of the revolution period T and

velocity β as powers of the momentum offset δ.

(2) Derive Eq. (17.19), the expansion of the slippage factor.

17.2. Figure 17.1 indicates that there are two series of pendulum-like longitudinal buckets

unless it is very close to the transition energy. Explain why we see only one series

under most considtion. Use the Fermilab Main Injector as an example. The Main

Injector has a γt = 21.8 (20.45 GeV) and α1 = 0.50.. Compute the distance between

the two series of buckets in fractional momentum spread when it is in a coasting

mode at the injection energy of 8 GeV and at 18.5 GeV.

17.3. For a proton storage ring with γt = 21.8 and α1 = 0.50. The rf voltage is 2.5 MV

and the synchrotron phase is 0◦. Compute the energy at which the two series of

longitudinal buckets merge.

17.4. Derive the synchrotron tune of a η2-dominated bucket starting from the Hamiltonian

of Eq. (17.29).

Answer: νs = νs0F , where F is given by Eq. (17.32)
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Figure 17.8: Phase-space plots of energy spread in MeV versus distance from bunch
center in cm at the end of 4000 turns. All are simulating 4×1012 micro-particles with
2×106 macro-particles. In the left 3 plots, the decay of the muons has been taken into
account. The first left plot is for η = 0 so that it just gives the amount of potential-
well distortion. The second and third plots are for, respectively, η = −1 × 10−6

and +1 × 10−6. The small deviations from the first plot are results of microwave
instability. The right 3 plots are the same as the left, except that the muons are
considered stable. Here, large microwave growths develop (note the change of energy
scale).
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Figure 17.9: Energy spread (MeV) versus bunch position (ns) of coasting beam
simulations. See text for explanation.
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